Sharp large deviations for the fractional Ornstein - Uhlenbeck process

نویسندگان

  • Bernard Bercu
  • Laure Coutin
  • Nicolas Savy
چکیده

We investigate the sharp large deviation properties of the energy and the maximum likelihood estimator for the Ornstein-Uhlenbeck process driven by a fractional Brownian motion with Hurst index greater than one half. A.M.S. Classification: 60F10, 60G15, 60J65

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp large deviations for the non-stationary Ornstein-Uhlenbeck process

For the Ornstein-Uhlenbeck process, the asymptotic behavior of the maximum likelihood estimator of the drift parameter is totally different in the stable, unstable, and explosive cases. Notwithstanding of this trichotomy, we investigate sharp large deviation principles for this estimator in the three situations. In the explosive case, we exhibit a very unusual rate function with a shaped flat v...

متن کامل

Large deviations for the Ornstein-Uhlenbeck process with shift

We investigate the large deviation properties of the maximum likelihood estimators for the Ornstein-Uhlenbeck process with shift. We propose a new approach to establish large deviation principles which allows us, via a suitable transformation, to circumvent the classical non-steepness problem. We estimate simultaneously the drift and shift parameters. On the one hand, we prove a large deviation...

متن کامل

Sharp Large Deviation for the Energy of α-Brownian Bridge

where W is a standard Brownian motion, t ∈ [0, T), T ∈ (0,∞), and the constant α > 1/2. Let P α denote the probability distribution of the solution {X t , t ∈ [0, T)} of (1). The α-Brownian bridge is first used to study the arbitrage profit associatedwith a given future contract in the absence of transaction costs by Brennan and Schwartz [1]. α-Brownian bridge is a time inhomogeneous diffusion ...

متن کامل

Minimum L1-norm Estimation for Fractional Ornstein-Uhlenbeck Type Process

We investigate the asymptotic properties of the minimum L1-norm estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process satisfying a linear stochastic differential equation driven by a fractional Brownian motion.

متن کامل

On Dynamical Gaussian Random Walks

Motivated by the recent work of Benjamini, Häggström, Peres, and Steif (2003) on dynamical random walks, we: (i) Prove that, after a suitable normalization, the dynamical Gaussian walk converges weakly to the Ornstein–Uhlenbeck process in classical Wiener space; (ii) derive sharp tailasymptotics for the probabilities of large deviations of the said dynamical walk; and (iii) characterize (by way...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008